40 research outputs found

    Investigating the role of the experimental protocol in phenylhydrazine-induced anemia on mice recovery

    Get PDF
    Producción CientíficaProduction of red blood cells involves growth-factor mediated regulation of erythroid progenitor apoptosis and self-renewal. During severe anemia, characterized by a strong fall of the hematocrit followed by a recovery phase, these controls allow a fast recovery of the hematocrit and survival of the organism. Using a mathematical model of stress erythropoiesis and an ad hoc numerical method, we investigate the respective roles of anemia-inducing phenylhydrazine injections and physiological regulation on the organism’s recovery. By explicitly modeling the experimental protocol, we show that it mostly characterizes the fall of the hematocrit following the anemia and its severeness, while physiological process regulation mainly controls the recovery. We confront our model and our conclusions to similar experiments inducing anemia and show the model’s ability to reproduce several protocols of phenylhydrazine-induced anemia. In particular, we establish a link between phenylhydrazine effect and the severeness of the anemia.Ministerio de Economía, Industria y Competitividad (project MTM2014-56022-C2-2-P

    Myb-Ets fusion oncoprotein inhibits thyroid hormone receptor/c-ErbA and retinoic acid receptor functions: a novel mechanism of action for leukemogenic transformation by E26 avian retrovirus.

    No full text
    The E26 and avian erythroblastosis virus (AEV) avian retroviruses induce acute leukemia in chickens. E26 can block both erythroid and myeloid differentiation at an early multipotent stage. Moreover, E26 can block erythroid differentiation at the erythroid burst-forming unit/erythroid CFU (BFU-E/CFU-E) stage, which also corresponds to the differentiation stage blocked by AEV. AEV carries two oncogenes, v-erbA and v-erbB, whereas E26 encodes a single 135-kDa Gag-Myb-Ets fusion oncoprotein. v-ErbA is responsible for the erythroid differentiation arrest through negative interferences with both the retinoic acid receptor (RAR) and the thyroid hormone receptor (T3R/c-ErbA). We investigated whether Myb-Ets could block erythroid differentiation in a manner similar to v-ErbA. We show here that Myb-Ets inhibits both RAR and c-ErbA activities on specific hormone response elements in transient-expression assays. Moreover, Myb-Ets abrogates the inactivation of transcription factor AP-1 by RAR and T3R, another feature shared with v-ErbA. Myb-Ets also antagonizes the biological response of erythrocytic progenitor cells to retinoic acid and T3. Analysis of a series of mutants of Myb-Ets reveals that the domains of the oncoprotein involved in these inhibitory activities are the same as those involved in oncogenic transformation of hematopoietic cells. These data demonstrate that the Myb-Ets oncoprotein shares properties with the v-ErbA oncoprotein and that inhibition of ligand-dependent RAR and c-ErbA functions by Myb-Ets is responsible for blocking the differentiation of hematopoietic progenitors

    TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism.

    No full text
    Simultaneous addition of both TGF-alpha and TGF-beta induces the sustained, long-term outgrowth of chicken erythrocytic progenitor cells, referred to as T2ECs from both chick bone marrow and 2-day-old chicken embryos. By analysis for differentiation antigens and gene expression, these cells were shown to represent very immature haematopoietic progenitors committed to the erythrocytic lineage. T2ECs differentiate into almost pure populations of fully mature erythrocytes within 6 days, when TGF-alpha and TGF-beta are withdrawn and the cells exposed to anaemic chicken serum plus insulin. Outgrowth of these cells from various sources invariably required both TGF-alpha and TGF-beta, as well as glucocorticoids. Proliferating, established T2ECs still require TGF-alpha, but are independent of exogenous TGF-beta. Using a TGF-beta-neutralizing antibody or expressing a dominant-negative TGF-beta receptor II, we demonstrate that T2ECs generate an autocrine loop involving TGF-beta during their establishment, which is required for sustained proliferation. Using specific inhibitors, we also show that signalling via Mek-1 is specifically required for induction and maintenance of cell proliferation driven by cooperation between the TGF-alpha and -beta receptors. These results establish a novel mechanism by which self-renewal of erythrocytic progenitors is induced and establish avian T2ECs as a new, quasi-optimal model system to study erythrocytic progenitors

    The v-ErbA oncoprotein quenches the activity of an erythroid-specific enhancer

    Get PDF
    Contains fulltext : 112869.pdf (publisher's version ) (Closed access
    corecore